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Summary: 

In recent years, the interest in the field of economic research in studying the effect of robots on 

economic outcomes, i.e., labour productivity, labour demand and wages, has increased from an 

individual country perspective as well as for country groups. By using a fixed effects panel 

modeling approach, this study of nine robot intensive European countries shows that the core 

characteristics of a general purpose technology (GPT) are already satisfied by industrial robots. 

In 2019, seven countries in the panel, i.e. Germany, Italy, France, Spain and the UK (top 5), 

Sweden (7th ) and Austria (10th ) - in terms of operational stocks - were among the top 10 of 

robot using  European countries (excl. Turkey). Following the understanding of a GPT of 

Bresnahan/Trajtenberg (1995), six panel regression models were estimated and linked to the 

four main characteristics of a GPT.  Accordingly, two new measures are proposed in this paper; 

the first one is named the Division of Labour (or DoL) and is constructed by building the ratio 

of labour productivity inside the manufacturing industry to labour productivity across all 

industries. The second one is the Robot Task Intensity Index (RTII), which accounts for the 

number of tasks that a robot was used for in different production processes across the nine 

European countries. A high level of fulfilled tasks implies a higher quality of robot as the 

number of potential tasks, which the robot can perform, is an important criterion for the quality 

of that robot. In accordance with the GPT literature, both measures showed the expected (in) 

significances. At the bottom line, all six models underlined the economic relevance of industrial 

robots for the nine European countries included in the analysis and give a strong indication that 

robots can indeed be seen as a new general purpose technology. 
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Zusammenfassung: 

Im Rahmen der ökonomischen Forschung nehmen Industrieroboter eine an Bedeutung 

zunehmende Rolle ein. Zu den häufigsten Untersuchungsfeldern zählen die Fragen, wie 

Roboter auf die Produktivität, die Beschäftigung und die Löhne wirken. Methodisch ist hierbei 

zwischen Studien zu unterscheiden, die diese Effekte für ein einzelnes Land untersuchen und 

solchen, die mehrere Länder  (-gruppen) betrachten. Für Ländergruppen werden oftmals 

Panelanalysen verwendet. Die vorliegende Arbeit zeigt für neun roboterintensive europäische 

Länder im Rahmen eines Fixed Effects Ansatzes, dass Roboter bereits wesentliche 

Charakteristika einer Basistechnologie erfüllen. Von den Ländern mit den höchsten absoluten 

Roboterbeständen in Europa (unter Nichtberücksichtigung der Türkei) sind mit Deutschland 

(1.), Italien (2.), Frankreich (3.), Spanien (4.), UK (5.), Schweden (7.) und Österreich (10.) die 

Top-5 vollständig und die Top-10 mehrheitlich im Panel vertreten. In Anlehnung an die 

Beschreibungen der Charakteristika einer GPT von Bresnahan/Trajtenberg (1995), wurden 

sechs Regressionsmodelle geschätzt und den vier Eigenschaften einer Basistechnologie 

zugeordnet. Zudem wurden zwei neue Maße entwickelt, der DoL und der RTII. Der DoL 

beschreibt den Grad der Arbeitsteilung in einer Volkswirtschaft und berechnet sich als Quotient 

aus den Arbeitsproduktivitäten im Sektor Manufacturing und im Sektor Total Industries. Der 

RTII beschreibt den Anteil an Aufgaben, die ein Roboter zu einem Zeitpunkt t erfüllt, gemessen 

an der Gesamtheit aller möglicher Aufgaben, die für Industrieroboter gem. der IFR 

Klassifizierung prinzipiell ausführbar sind. Es bildet somit ein Maß für die Qualität der Roboter. 

Sowohl die zwei neu eingeführten Maße, als auch die übrigen Variablen in den 6 Modellen 

weisen die in der Literatur beschriebenen erwartbaren Vorzeichen und Größenordnungen auf. 

Die Ergebnisse der Untersuchung deuten darauf hin, dass Roboter eine neue Basistechnologie 

darstellen. 
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1. Introduction 

The influence of industrial robots on economic outcomes is a topic, which has increasingly 

garnered the attention of researchers in academia as well as of economic policymakers. Since 

2004, the European Commission has intensified their funding for cognitive systems, robotics 

and AI. During that time,  funding in the range of €80 million per annum was spent on new 

projects, including up to 20 new collaborative projects every year (under Horizon 2020). 

Between the years 2014 and 2018, roughly €87 million was invested into robotic projects under 

Horizon 2020, e.g., in the form of Public Private Partnerships. For research and economic 

application purposes, the annual European Robotics Forum was launched in 2009. As with other 

modern technologies, the effects that are attributed to robots are considered as being drivers of 

rising output and productivity. For many industrialized countries, the annual growth rates of 

labour productivity (LP) are moderate but still positive. Hence, certain questions arise about the 

size of the effect that robots - as a specific example of a process innovation - have on labour 

productivity, whether the effects are appropriately measured (taking into account the Solow 

Paradox) and if they lead to future LP growth. Basically, the question arises as to if these aspects 

imply that robots can be classified under the term general purpose technology (GPT). Therefore, 

the aim of this paper is to show how robots affect labour productivity in nine European countries 

in comparison to other capital goods over the time between 1995 and 2015. The premise is that 

robots are an innovative factor of production and as such - in line with several other studies - 

increase labour productivity but do so less strongly than aggregated capital goods. Moreover, it 

is suggested that the productivity effects of robots and some of the other capital goods tend to 

go in the same direction while other capital goods have either no or indeed opposite effects on 

labour productivity. The sign depends on whether other capital goods are gross complements 

or substitutes in the macroeconomic production of value added. 

The outline of the paper is as follows: In Section 2, the understanding of a GPT is used to 

discuss whether and under which circumstances robots can be considered as a GPT (2.1). 

Section 2.2 reflects current empirical studies that consider the effect of robots on labour 

productivity, while Section 3 describes the underlying data and stylized facts. In Section 4, 

several aspects of being a GPT are tested empirically inside a multi-model panel framework. 

Each model links to a specific hypothesis (posited in 4.1) addressing different characteristics of 

a GPT. Firstly, the general premise that robots contribute (significantly) to labour productivity 

is verified with different capital goods (model M1); next, by introducing an innovative, self-

defined measure - the task intensity of robots (RTII) - the quality improvement of industrial 

robots and the subsequent effects on labour productivity are estimated (M2). In a third model 

(M3), the ratio of gross output and value added was used to check whether robots attend to 

increase the degree of division of labour. For a further model specification (M4), a quadratic 

term - as in Scherer (1989) - is used to capture potential returns to scale. The fifth model (M5) 

captures the effects of robots over sub-periods of time using a split data set to analyze the time 

dimension that is needed for robots to generate their full productive gains throughout the 

economy. Finally, the hypothesis of whether robots lead to capital augmentation is analyzed in 

model 6 (M6). In Section 5, the results from the aforementioned empirical models are discussed 

with the aim of answering the question of whether industrial robots in the EU can be considered 

as a GPT (yet). To answer this question, data on industrial robots in nine European countries - 

8 of which belong to the top 9 European countries with the highest robot intensities with the 



 9 

exception of Belgium  which is not taken into account because capital data are not reported in 

the EU KLEMS database - plus the UK are considered. 

 

2. Theory and Methodological Approach 

 

2.1. Industrial Robots: Arguments for the Existence of a New General 

Purpose Technology 

Are robots (becoming) a new general purpose technology? To address the question of whether 

the term GPT is appropriate to describe the effects of robots it is firstly necessary to define what 

characteristics are typically associated with a GPT in the literature. The understanding of GPTs 

is linked to what Landes (2008) refers to as an industrial revolution, i.e., the substitution of 

labour with machinery and, in more detail, industrial revolutions, i.e., different waves of 

technological change, e.g., textile manufacturing, the iron industry, the steam engine, machine 

tools, chemicals, and transportation. The term GPT was introduced by Bresnahan and 

Trajtenberg (1995), who developed a more conceptual understanding of what constitutes a GPT. 

The authors characterize a GPT by four dimensions: 

i. Pervasiveness (they are used as inputs by many downstream sectors), 

ii. an inherent potential for technical improvement, 

iii. innovational spawning and 

iv. returns to scale. 

For the purpose of this work, innovational complementarities are summarized under the term 

‘innovational spawning’ as in Jovanovic and Rousseau (2005). A technology that fulfills all of 

the aforementioned criteria is called a GPT. Pervasiveness cannot directly be accounted for in 

a macro study and is therefore expressed indirectly via the effects of robots on labour 

productivity and the effects at the national level on the degrees of division of labour (Figure 1). 

Two main characteristics of innovational spawning - decreasing prices and/or an increasing 

level of quality - mentioned by Jovanovic and Rousseau, can already be detected on the macro 

level as the real and quality-adjusted prices of robots are decreasing in the main industrialized 

countries (Dauth et al., 2017). Due to missing information concerning the quality and prices of 

robots in the International Federation of Robotics (IFR) dataset, these aspects cannot be dealt 

with in this study. 

Criterion iv. leads to the conclusion that a GPT is essentially a drastic innovation with the 

inherent potential of deterring market entry (see, e.g., Salop (1979), Ellison and Ellison (2007), 

Wilson (1992) and Tirole (2011)). The positive achievement of GPTs can be seen in sharp 

contrast to the potential of becoming ‘drastic innovations’. Usually it takes some time for the 

innovating firm behind a GPT to earn a profit from its innovation. Rising implementation costs 

could hamper the adoption of the technology (e.g., as it is secured by patents), which lowers 

the social benefit of the innovation. The inventors of drastic innovations could generate long-
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term benefits from early market entries by achieving monopoly profit shares and deterring the 

subsequent market entry of potential competitors. Hence, the diffusion process of an innovation 

and thus the level of innovation is artificially reduced, where knowledge serves as a factor of 

competitive advantage. 

Both views on GPTs, as radical innovations with and without the tendency to become drastic 

innovations, receive support from literature: The former line of argumentation can be found in 

Olmstead-Rumsey (2019). The author sees a decline in radical innovations (more precisely, 

firms who own radical innovations) as a reason for market concentration and the productivity 

slowdown in the US. On the other hand, the perspective of GPTs eliminating market 

concentration is supported by Aghion et al. (2014). Both perspectives might be combined in 

such a way that in the early stages of newly introduced goods, there will be a tendency for 

labour-saving technology as well as for monopolistic rents. In the long run, a capital-

augmenting process may follow if the innovation level cannot be matched by other market 

competitors, such that there is a potential for monopolistic rents (price > average costs). 

This would lead to the observation of new technologies being primarily capital-augmenting. If 

this profitable position is not time-persistent, i.e., new innovators emerge as rivals for the 

enlarged market shares of the former pioneer, this can lead to the innovation becoming a GPT 

and reducing the additional market shares of the former monopoly. This development is in line 

with the empirical development of many industrialized countries (see Karabarbounis and 

Neiman (2014)). One reason why labour productivity (and the labour income share) in the long 

run remains (almost) constant is mentioned by Acemoglu (2003) by referring to the time 

dimension such that in the short term, imbalanced growth paths are observed but tend to 

diminish over the longer term. If it was otherwise, the capital-deepening technology would 

transform into a persistent example of capital-augmenting technical progress, this would than 

contradict the idea that the innovation is a GPT. A productivity slowdown would then 

necessarily follow a time-persistent increase of capital intensity. Brynjolfsson et al. (2017) 

determine four aspects as to why a GPT might be associated with a disproportional increase or 

even a stagnation of productivity growth:  

1) False hopes, 

2) mismeasurement,  

3) concentrated distribution and rent dissipation and 

4) implementation and restructuring lags.  

As throughout this study, two of the most frequent used economic output measures are used 

directly in the case of valued-added, and indirectly in the case of gross output, the first and 

second argument are left for political debates. The third argument on the contrary seems highly 

interesting with regard to an empirical investigation as it implies that the benefits of the new 

technologies are being enjoyed by only a relatively small fraction of economic decision-makers. 

If that is the case, productivity gains are too small as Brynjolfsson et al. (2017) state, i.e., that 

particularly technologies that are ‘narrowly scoped’ and rivalrous in nature create wasteful gold 

rush-type activities. That is because the allocation of resources is placed into reducing 

competition by deterring the entry of rival firms or into seeking to be one of the few 

beneficiaries, which destroys many of the benefits of the new technologies. Andrews et al. 
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(2015) have shown that there is a gap between the innovation frontier and average firms, which 

has been increasing over the last years. Either this contradicts the idea of GPT’s harmonizing 

with economic competition and welfare, or it undermines the practical relevance of GPTs. The 

fourth explanation allows both contrary aspects of the Solow Paradox to be correct, such that 

the Solow Paradox is only a temporary phenomenon. The core of this story is that it is more 

expensive (in terms of additional required investment and due to opportunity costs, i.e., the time 

it takes until new innovations are accepted inside each working-field of a firm) than it is 

generally assumed to implement and exploit new technologies. This is essentially true for those 

new technologies that qualify as GPTs. Indeed, the more profound and far-reaching the 

potential of an innovation is, the more likely is the necessity of a restructuring process inside 

(heterogeneous) firms and thus the longer the time lag will become between the initial invention 

of the technology and its full impact on the economy. 

Another stream of literature discusses the distinct relation between GPTs and productivity more 

critically. Lipsey et al. (2005), for instance, use the concept of a transforming GPT, i.e. a 

technology that transforms many parts of an economy. The effects on productivity are not seen 

as deterministic as they reject not only the idea that each GPT necessarily has to contribute to 

productivity gains but also that there is a cumulative gain function of past GPTs. In the end, 

Lipsey et al. (2005) deny the ability of a production function to accurately capture productivity 

developments. Furthermore, they state that the time (or what is referred to as the time lag in 

Brynjolfsson et al. (2017)) needed to disclose the productivity gains, might differ among GPTs. 

As a consequence, there would be no longer be a contradiction between slow productivity 

contributions and a significant overall (i.e., cumulative) effect as this would mean a more 

continuous spread with a higher probability of long-term necessity, in comparison to a “one hit 

wonder” technology. The main difference appears for aspect iv. which is further subdivided by 

Lipsey et al. (2005) into Static and Dynamic Externalities (S.E. vs. D.E.). Whereas S.E. capture 

spillover effects without changing the Walrasian character of the economy, D.E. refer to any 

sort of scale economies (at the intra-industry and/or intra-firm level). While D.E. seem most 

interesting in characterizing innovations as GPTs, this aspect - due to data limitations - cannot 

be further elaborated on in this paper. Therefore, only an extant understanding of returns to 

scale is used. 

Summarizing the different considerations about GPTs, one can state that industrial robots not 

only directly increase labour productivity they also help other GPTs to spread throughout the 

economy. Hence, robots seem to be a natural example for a GPT in the sense of Bresnahan and 

Trajtenberg (1995) and those of Carlaw and Lipsey (2002) and Lipsey et al. (2005). 

 

2.2. Related Studies 

 

Several studies shed light on the connection between robots and economic growth. Central to 

most of the research papers in this area is the concept of a neoclassical production function, 

mainly a Cobb-Douglas or CES-type function is discussed, whereby robots are captured as an 

additional input. A theoretical contribution is offered by DeCanio (2016) who shows for 

different production specifications the potential effects of robots on the functional income 

distribution. Graetz and Michaels (2015), Kromann et al. (2016) and Jungmittag and Pesole 
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(2019) use the Cobb-Douglas production function as a starting point for their respective 

empirical analyses. This concept is then used to estimate the functional relationship between 

the innovative input measure and the economic outcome, i.e., the contribution that robots play 

in terms of economic growth. All of these studies employ a panel data approach. In a more 

recent research contribution, Jungmittag uses a convergence testing approach to analyze 

whether robot densities inside EU manufacturing sectors are drivers of labour productivity 

convergence or divergence. Using data from the EU KLEMS database, the author finds for 24 

EU countries between 1995 and 2015 that robots per €1 million of non-ICT capital input 

contribute significantly to labour productivity growth. While there was no empirical evidence 

for convergence for the first period (1995-2004), there is relatively fast conditional and 

unconditional convergence for the second period from 2005 to 2015 (Jungmittag, 2020). Dauth 

et al. (2017) show for Germany that an increase in robots per 1,000 workers increases labour 

productivity (measured as GDP per person employed) between 2004 and 2014 by 0.5%. Graetz 

and Michaels (2015) find that industrial robots increased both value-added and labour 

productivity for 17 countries between 1993 and 2007. The use of robots raised countries’ 

average growth rates by about 0.37 percentage points. Graetz and Michaels (2015) also find 

that robots had no significant effect on total hours worked. Kromann et al. (2016) find, for 9 

countries and 11 industries,  that a one standard deviation increase in robot intensity (measured 

as the number of industrial robots per €1 million non-ICT capital) effects a total factor 

productivity increase of roughly 6.6% using a log difference panel approach for the years 2004 

and 2007. 

The explicit modeling of technical progress is not accounted for in these studies, nonetheless 

Jungmittag and Pesole (2019 as well as Jungmittag (2020) make use of an implicit measure for 

technical progress of robots that is related to the procedure used by Graetz and Michaels (2015). 

By linearly depreciating the industrial robots under the assumption of different life-spans 

(namely 6, 10 and 20 years, that correspond to 16%, 10% and 5% depreciation rates, 

respectively), which are lower than the 12 years, one-horse shay depreciation method assumed 

by the IFR (2017), Jungmittag implicitly accounts for technical change. That is because the new 

frontier technology replaces the old one, i.e., after each 6, 10 or 20 years, more innovative and 

thus more productive robots are at work. Due to depreciation, the absolute number of robots 

decreases in t=6, t=10 or t=20, respectively, and this corresponds to higher robot productivity 

(Y/R). Krenz et al. (2018), by using a new measure of reshoring activity and data from the 

WIOD database, find a positive association between reshoring and the degree of automation 

(i.e., robots per 1,000 workers). On average, within manufacturing sectors, an increase in robot 

intensity by one robot per 1,000 workers is associated with a 3.5% increase of reshoring activity 

(relative increase of domestic vs. foreign inputs). 

Another stream of gains in productivity, in addition to the rise of innovative factors of 

production, are attributed to a combination of new inputs with traditional inputs. Ghodsi et al. 

(2020) interpret the rise of new technologies, e.g., machine learning, artificial intelligence and 

robotics, as those key technologies that will determine the future combination of input factors 

and their relations as well as the generation and distribution of value-added across sectors. This 

view can be expanded to differences across countries, as this development affects not only the 

competition profile of firms in a given industry but also those of a country. A central premise 

in Ghodsi et al. (2020) is the idea that productivity gains cumulate over different industries, 

either via direct productivity effects in the final goods or, alternatively, via indirect effects as 

more efficient intermediates appear due to the use of robots in the production of non-robot using 
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industries. Examples of which include the provision of personal services such as the customer 

advisory sector, where firms work with more efficient computers that can do better data analysis 

and thus improve the quality of the services provided. While the authors argue that this gain in 

efficiency results in higher product demand that “might eventual lead them [i.e., firms - K.S.] 

to create higher employment”, a labour-saving technology might also be used for further 

process and product innovations, especially if the final good markets are competitively 

organized and the outcome is not only a function of prices but hedonic prices. Innovations are, 

from a theoretical point of view, therefore more likely to hold labour demand stable than 

expecting a significant outcome from the technology itself or from changes in the firms’ 

optimization calculus. This view is supported by the results of Gregory et al. (2016), who find 

that an increase in demand for goods, due to lower prices, was necessary to enable positive 

labour demand in 27 European countries (24 are current member of the EU27 and three are 

non-EU countries, including the UK). 

Figure 1: Research Questions and Empirical Models 

Source: Own representation 

In Section 4, the central premises for classifying a new technology as a GPT are tested 

empirically. The methodological approach is described in Figure 1. Measuring technical 

improvements - via the implementation of a newly developed indicator RTII - and returns to 

scale - using a methodological approach described by Scherer (1989) – was relatively 

straightforward. It should be noted that for the empirical models, some deviations from the 

theoretical GPT definitions were necessary. That is because the definitions refer to a related 

intra-firm/intra-industry perspective that cannot be reflected in macroeconomic datasets. This 

holds particularly true for the application of the terms pervasiveness and innovational 

complementarities as for both it would be necessary to account for industrial spillover effects. 

Therefore, a modified understanding of both concepts is required. Pervasiveness is thus chosen 

to be achieved if robots on a macro level show a significant effect on labour productivity (M1) 

and if robots enhance the division of labour inside the economy (M3). Detecting innovational 

complementarities is more complicated when it comes to being measured on a macro level. 

Therefore, if robots do not only tend to increase capital but also lead to capital-enhancing 

technical change, innovational complementarities are said to be at work. That is the case if 

robots, as an additional capital input, are not only significant but also increase the significance 

of traditional capital formations (M6).  
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3. Data Description  

3.1. Variables 

The input and output variables were taken from the EU KLEMS database released in September 

2017 and revised in July 2018. The only exception was made for the industrial robot variable, 

which was taken from the IFR Industrial Robots Database 2017. Value-added was currency-

adjusted and divided by the national price level in order to derive real valued-added. In a first 

step for the three countries in the dataset that are not part of the Eurozone, namely the UK, 

Sweden and Denmark, all values that were reported in national currencies were converted to 

Euro using historical exchange rates from the finazen.net website.1 In a further step, the 

structure of the missing values was analyzed using Little’s MCAR test (Little, 1988) and visual 

inspection. The test results revealed that data were not missing completely at random (Allison, 

2009) which would – strictly speaking – rule out estimating the missing values via regression 

analysis (Hair et al., 2014). Nonetheless, using a simple OLS regression on the cross-sectional 

level data delivered the most convincing results against other methods that are suggested for 

dealing with not missing completely at random data, e.g. ‘multiple imputation’ (Rubin 1987). 

The reason for this can be easily explained: As data reported in the EU KLEMS database are 

communicated by the national agencies, a lack of observations in specific variables or at 

specific points in time naturally include a structural component, which was revealed by Little’s 

MCAR test results. This becomes more obvious when one considers that data were missing for 

only a few countries with a repetitive element concerning the place of missing data in the dataset 

(e.g., the first two years were missing for the UK; the last year was missing for Sweden, Italy 

and again the UK). The missing values appeared solely for the capital variables. 

 

Table 1: Panel Core Variables (1995 to 2015) 

Variable  Description Source 

Industrial Robots Operational stock, time in use: 12 years IFR 2017 Database 

(Real) Value 

Added (VA) 

Difference between the product price and 

costs of production 

EU KLEMS 

(9/2017) 

HEMPE Total Hours Worked See above 

Captot Real fixed capital stock (2010 prices) See above 

CapCTtot Real fixed capital stock (2010 prices) -

Communication Equipment 

See above 

CapITtot Real fixed capital stock (2010 prices) - 

Computing Equipment 

See above 

CapSoft Real fixed capital stock (2010 prices) - 

Computer Software and Databases 

See above 

 

Source: Own representation  

 
1 The reference address is given here: https://www.finanzen.net/devisen/pfundkurs/historisch (last 

accessed December 7th, 2020). 
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3.2. Distribution of Industrial Robots 

The argument for an increase in the level of comparative advantage is in line with being a GPT 

as robots enhance (further) both process and product innovations. This then leads to an increase 

of the terms of trade, while competitive advantages arise due to the possibility of incorporating 

consumer preferences, e.g., by mass-customization, which in the past 30 years raised the 

demand for a new class of robots that are able to implement mass customization (Eastwood, 

1996). According to ISO-8373, the International Federation of Robotics (IFR) defines industrial 

robots as 

’an actuated mechanism programmable in two or more axes with a degree of autonomy, 

moving within its environment, to perform intended tasks. Autonomy in this context means the 

ability to perform intended tasks based on current state and sensing, without human 

intervention.’ (IFR, 2017: 32) 

This definition includes linear robots (e.g., cartesian and gantry robots), SCARA robots, 

articulated robots , parallel robots and cylindrical robots as well as other type of robots that 

meet the above mentioned criteria. With the ongoing improvements of robot features in modern 

manufacturing plants, the definition of industrial robots may at first glance seem somewhat 

antiquated but the approach makes sure that every robot in use is counted. The following figures 

show the distribution of robots in the panel (Figure 2). The distribution of robots is far from 

normal as only a few countries make up for a great majority of the overall stock of robots. 

 

Figure 2: Histograms of Robot Distribution and Robot Densities (per Country) 

 

Source: IFR (2017), EU KLEMS (9/2017) - own calculations 

 

Germany is by far the most dominant robot-using country with a rising relative share of between 

0.468 (1995) and 0.518 (2015), with a single exception in 2012 (0.258). Despite an absolute 

increase in terms of the operational stock, the speed of growth was outpaced in this year by 

other countries, such as Spain, Italy, Sweden and Austria. As a potential reason, one can 

consider the historical fall in revenue experienced by the German manufacturing sector in the 
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year 2009.  This fall had a brief impact in the data such that Germany retook its dominant 

position for the final five years of the panel. A comparison of the operational stock and robot 

density (robots by hours worked) shows a higher concentration for the former measure. Thus, 

robot density shows a lower concentration around the mean so that differences among countries 

are lower in terms of robot densities than in terms of operational stocks. In addition to the 

demand for robots, the supply side is briefly presented here in Figure 3. 

Therefore, it is not surprising that robot demand and robot supply are both strongly correlated 

with the size of the manufacturing sector in each country. Hence, there is a strong positive 

correlation between the rankings of those countries who are at top in terms of producing robots 

and those who are installing robots. Again, Germany, Spain, France and Italy make up the top 

5, as is the case in terms of operational stocks. 

 

Figure 3: Robot Densities and Delivered Robots (per Country) 

 

Source: IFR(2017), EU KLEMS (9/2017) - own calculations 

 

3.3. Capital and ICT Capital Growth 

Capital productivity (Y/K) shows how efficiently capital is used to generate output. The growth 

rate of capital productivity was positive for all three time spans solely for Italy and Sweden.  

Six out of the nine countries had positive growth rates between 1995 and 2015, whereas 

Germany, France and Finland suffered from a reduction in capital productivity. Less polarizing 

was the picture for the first sub-period of the panel (1995-2004), During these 10 years all 

countries experienced an increase in capital productivity, whereas seven countries went through 

a decline of capital productivity growth rates during the second sub-period (2005-2015), while 

at the same time only for Sweden and Italy the capital productivity has increased (Table 2). 
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Table 2: Growth Rates of Capital Productivity (Y/Captot) 

 

Source: EU KLEMS (9/2017) – own calculations 

 

While overall capital is a very heterogeneous concept for measuring especially innovative 

capital input goods, ICT goods are generally accepted as GPT (see, e.g., Basu and Fernald 

(2007) for the US and Guerrieri et al. (2011) for the EU) and include two aspects that can be 

considered as relevant for robots to spread their full productivity potential throughout the 

economy. Thus, ICT capital can be seen as a complementary innovation for robots: Firstly, ICT 

control elements are necessary in order to use and control robots in order to let them fulfill their 

intended tasks. Secondly, fast and stable internet connectivity builds the fundamentals of IoT 

technologies and inter-machine communication, or AI elements such as machine learning, 

which are becoming more and more integrated into robotic systems. Thus, a positive linkage 

between robots and ICT equipment and between robots and the quality of internet-connectivity 

could be seen as sources of labour productivity gains. As data concerning the broadband quality 

at a national level are scarce, data from cable.co.uk was used for a single year in order to check 

if there is a high rank correlation between the operational stock of robots and internet quality 

(rxy = - 0.317). As this was not the case, using ICT and software capital as regressors appears to 

be sufficient for the subsequent analysis in this paper. 

Figure 4: ICT Capital (per Country)  

Source: EU KLEMS (9/2017) - own calculations 

 
1995-2015  1995-2004  2005-2015  

Austria 0.006 0.002 -0.109 

Denmark  0.006  0.003 -0.089 

Spain 0.009  0.0074 -0.016 

Finland  -0.0076  0.002 -0.025 

France -0.010  0.0022 -0.0019 

Germany  -0.003  0.002 -0.02 

Italy  0.009  0.002 0.12 

Sweden  0.014  0.013 0.277 

UK  0.018  0.0078 -0.036 
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Table 3: Growth Rates of ICT Capital Productivity (Y/CapICTtot) 

Source: EU KLEMS (9/2017) - own calculations 

 

3.4. Labour Productivity Growth 

By considering two different time intervals (namely, 1959-1973 and 1973-1995), Jorgensen et 

al. (2008) find for the US that prior productivity growth is not a good estimator for future labour 

productivity growth: On average, labour productivity grew roughly twice as fast for the 

observed data during the first 14 years (2.82) as it did during the subsequent 22 years (1.49).  

In addition, Brynjolfsson together with his co-authors shows by considering period strings of 

10 years that for the US economy, prior labour productivity growth is not a good estimator for 

future productivity growth (Brynjolfsson et al., 2018). The beta coefficient for both types of 

productivity were insignificant and the R2 was very low; 0.009 (labour productivity) and 0.023 

(TFP). 

In contrast to the above mentioned studies, the present work focuses on nine European countries 

and runs a simple regression; once for the untreated univariate time series and next for the first 

differenced, non-autocorrelated time series. The results are similar. All of the stationary 

regressions have insignificant beta coefficients and a low R2, thus implying that growth that 

occurred 10-years earlier does not contribute to the current growth of labour productivity for 

the chosen European countries. Out of the nine countries, with the exception of Italy, the UK 

and Sweden, the majority had a significant intercept, i.e., labour productivity growth was 

positive on average. These findings again motivate the idea that GPTs are driving labour 

productivity growth such that unexpected increases and decreases follow one another and that 

there is no persistent trend; neither positive nor negative. It seems noteworthy that over the 

whole 20-year period, the annual growth rates of labour productivity and ICT capital 

productivity were positive for all countries and, in absolute terms, roughly ten times higher than 

for the individual sub-panels. Additionally, the figure for labour productivity growth contrasted 

with that of ICT capital productivity growth, which indicates that there are notable differences 

amongst the countries; concerning the sign and the magnitude. Nevertheless, for all countries 

and years, the ratio of Y/L and Y/K, i.e. K/L was greater than unity for the aggregated ICT 

capital variable, i.e. software, CT and IT capital. This implies that the productivity of labour 

grew faster than that of ICT capital. This finding holds true not only for the development of the 

ICT capital stock but also for the development of the overall capital stock (nor presented here). 

 
1995-2015  1995-2004  2005-2015  

Austria  0.037 0.007 -0.003 

Denmark  0.079 0.006 0.005 

Spain 0.076 0.011 -0.065 

Finland  0.076 0.007 0.087 

France 0.044 0.014 0.328 

Germany  0.049 0.079 -0.040 

Italy  0.026 0.008 0.071 

Sweden  0.042 0.010 -0.099 

UK  0.090 0.004 -0.186 
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Table 4: Growth Rates of Labour Productivity (Y/L), expressed in working hours 

Source: EU KLEMS (9/2017) - own calculations 

 

3.5. Robot Productivity Growth 

Figure 5 and Table 5 describe the development of the average robot productivity (Y/R) - for the 

nine European countries considered between 1995 and 2015. For most countries and time 

periods, the annual growth rates are close to zero and negative, implying Δ�̇� < Δ�̇�, thus leading 

to a moderate slowdown in the productivity growth of robots. From the top three robot-using 

countries, i.e., Germany, Italy and France, only the latter two mentioned countries experienced 

positive growth rates of robot productivity for the period between 2005 and 2015. 

 

Figure 5: Robot Productivity (per Country) 

Source: EU KLEMS (9/2017), IFR(2017) - own calculations 

 

 
1995-2015  1995-2004  2005-2015  

Austria  0.023 0.041 0.021 

Denmark  0.026 0.017 0.022 

Spain 0.059 0.016 0.037 

Finland  0.042 0.022 0.032 

France 0.021 0.021 0.023 

Germany  0.026 0.023 0.026 

Italy  0.029 0.017 0.021 

Sweden  0.029 0.024 0.027 

UK  0.034 0.02 0.028 
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Table 5: Growth Rates of Robot Productivity (Y/R) 

Source: EU KLEMS (9/2017), IFR(2017) - own calculations 

 

 

4. Empirical Results 

4.1. Research Question and Hypothesis 

The empirical models serve to answer the question of whether the aspect of being a GPT 

elaborated under Section 2.1 can be empirically confirmed for industrial robots by using fixed 

effects panel estimation methods.  This estimation approach was chosen as particularly  for 

country groups, panel data analyses are a frequently employed estimation method and combine 

the advantages of both; times series (N=1) and cross-sectional analysis (T=1), which leads to a 

higher efficiency of the estimator (Hsiao, 2014).  

Each model incorporates one of the main characteristics for considering an innovation a GPT, 

so that if at least M1, M2, M5 and M6 are fulfilled, robots can be characterized as a GPT. M3 

and M4 serve as additional criteria for pervasiveness and returns to scale and, as such, appear 

to be less important for characterizing robots as GPTs than the four main criteria. For this paper, 

six different hypotheses are considered that include robots as an additional input for the 

production function of nine different European countries. The hypotheses are checked by way 

of different models for each hypothesis. All models account for disembodied technological 

change, where robots are included in the production function but are not attributed to a specific 

factor of input, i.e., capital or labour. As a robustness check, a separated ICT variable is used 

in order to check if either ‘Communication Equipment capital (referred to as CapCT)’, 

‘Computing Equipment capital’ (referred to as CapIT) or ‘Software Capital’ (referred to as 

CapSoft) are relevant for the diffusion process of robot technology. Every estimator was 

corrected for underlying heteroscedasticity by using HC variance-covariance matrices. 

Different aspects of robots being GPTs are investigated: 

i. M1: Robots have a significant, positive effect on labour productivity, 

ii. M2: Robots show an increase in quality (Robot Task Intensity Index) which additionally 

raises labour productivity, 

 1995-2015 1995-2004 2005-2015 

Germany  -0.038 -0.065 -0.009 

France -0.015 -0.041 0.013 

Spain   -0.045 -0.085 -0.005 

Italy   -0.022 -0.044 0.001 

UK   0.010 0.012 0.007 

Denmark   -0.065 -0.083 -0.040 

Finland   -0.016 -0.049 0.022 

Sweden   -0.007 -0.005 -0.003 
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iii. M3: Robots have no significant effect on the division of labour (DoL) , 

iv. M4: Robots show significant returns to scale (Scherer−Approach), 

v. M5: Effects from robots are significant and positive for the first sub-panel and 

significant for the second sub-panel. Comparing the size of the coefficients yields 

whether the productivity effects decrease or accumulate over time. 

vi. M6: Robots lead to capital deepening, i.e., the significance of other capital variables 

increases after including industrial robots. 

 

 

4.2. Empirical Models 

For Models 1 – 6, the per capita production function, where each input variable is divided by 

the number of hours worked, takes the following principal form: 

𝑦𝑖𝑡  =  𝐴𝑖𝑡 ⋅  𝑟𝑖𝑡
𝛼     ⋅  𝐶𝑎𝑝𝐶𝑇𝑖𝑡

𝛽 ⋅ 𝐶𝑎𝑝𝐼𝑇𝑖𝑡 𝛾 ·  𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡
𝛿

 

whereby yt, CapITit, CapCTit, and CapSoftit and rit denote per capita output (measured in hours 

worked) and input in intensities of labour and different kinds of capital units and Ait measures 

Total Factor Productivity (TFP). As an ICT variable, the individual capital figures of CT and 

IT Capital were used and in accordance with Kromann et al. (2016) software is also included 

in the regression due to their line of argumentation, i.e., the aim is to use a measure of forms of 

capital that are not embodied in the robot measure. Software technologies of course are a 

relevant aspect of controlling industrial robots and thus can be seen as complementary 

innovations, which underlines the character of robots being a GPT. Software Capital contributes 

to the amount and complexity level of tasks that can be executed by robots. Software is 

measured in expenditures per annum and this is a very imprecise measure for the quality of the 

software. Interestingly, Software Capital is only weakly correlated with value-added (𝑟𝑥𝑦 ≈

0.124), moderately correlated with labour productivity, measured in working hours (𝑟𝑥𝑦 ≈

0.3884) and shows almost no correlation with CT and IT Capital (𝑟𝑥𝑦 ≈ 0.037 and 𝑟𝑥𝑦 ≈

−0.02), respectively. Thus, including all three forms of capital is not expected to cause 

multicollinearity issues (Appendix II). For the sake of traceability from where the productivity 

gains originate, the three capital variables are used separately instead of the constructed ICT 

variable.     

The regression model was conducted by using a diff-log approach to achieve stationary 

variables and simultaneously use elasticities for the sake of interpretation. TFP is captured via 

country and time fixed effects such that variables are allowed to vary systematically between 

countries. This way, the model accounts for different production technologies among those 

countries. Due to heteroscedasticity in the data, the regression models all make use of a HC 

estimator for the variance-covariance matrix to assure the validity of the estimator and 

significance levels. 
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4.2.1. M1: Industrial Robots and Labour Productivity 

For M1, the regression model has the following specific form, wherein di and et denote country- 

and time specific fixed effects: 

𝑙𝑛(𝑦𝑖𝑡) −  𝑙𝑛(𝑦𝑖𝑡−1)

= 𝛼 + 𝛽1[𝑙𝑛(𝑟𝑖𝑡)  −  𝑙𝑛(𝑟𝑖𝑡−1) + 𝛽2[𝑙𝑛(𝐶𝑎𝑝𝐶𝑇𝑖𝑡) −  𝑙𝑛(𝐶𝑎𝑝𝐶𝑇𝑖𝑡−1)]

+ 𝛽3[𝑙𝑛(𝐶𝑎𝑝𝐼𝑇𝑡) −  𝑙𝑛(𝐶𝑎𝑝𝐼𝑇𝑖𝑡−1)] + 𝛽4[𝑙𝑛(𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡)  −  𝑙𝑛(𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡)]

+ 𝑑𝑖  +  𝑒𝑡  +  𝑢𝑖𝑡 

 

Table 6: M1 Regression Model (Results) 

 

Source: Own calculations 

 

Out of the four regressors, robots and Software Capital (each in per working hours) have the 

strongest impact on labour productivity. Increasing the operational stock of robots per hours 

worked by 3% leads on average to growth in labour productivity of roughly 1%. The effect of 

Software Capital equals approximately one third of the effect caused by robots. Communication 

Equipment Capital has a negative effect on labour productivity which is almost as high as the 

common positive contributions of Software and Computing Equipment on labour productivity 

growth. For the fully-specified model - despite the high significance levels - only roughly 55% 

of the variation in real valued-added can be explained by variations of robots, software and 

communication technology capital, each measured in working hours units. 

 

4.2.2. M2: Quality Improvements of Industrial Robots: Robot Task 

Intensity Index (RTII) 

The second model specification (M2) corrects for the fact that the data of robots used do not 

account for changes in the quality levels. Assuming that a robot installed in the year 1995 has 

on average the same contribution – ceteris paribus - to output or labour productivity as a robot 

installed in the year 2000 or the year of 2015 seems hardly plausible. This is an additional 

drawback of the IFR data as the homogenous perspective on different types of robots implicitly 

assumes the same contribution to economic outcome. As aggregates on a national level are 

Diff (Log LP)  M1.1 M1.2 M1.3 M1.4 

Diff(Log Robots 

/ Log HEMPE) 

0.179 (*) 0.266 (**) 0.246 (**) 0.262 (***) 

Diff(Log CapCTtot  

/ Log  HEMPE) 

- -0.074 -0.05 -0.094 (***) 

Diff(Log CapITtot 

/ Log HEMPE) 

- - 0.118 (***) 0.054 (*) 

Diff(Log CapSofttot 

/ Log HEMPE) 

- - - 0.07 (***) 

Observations 188 188 188 188 

Adj.RSq.  0.01 0.14 0.35 0.554 



 23 

considered, this aspect seems unavoidable even if different types of robots would have been 

accounted for in the IFR dataset. This issue is therefore not considered as problematic; the 

quality issue on the other hand seems highly relevant to capture process innovation dynamics. 

That robot usage starts in only a few applications while over time the number of tasks covered 

by robots is increasing is reported also by Carbonero, Ernst and Weber (Carbonero et al. 2018). 

The authors conclude that this “reflects one facet of technological improvement of automation, 

namely, the practical ability of carrying out more and more tasks” (p. 16). That can be seen as 

a sign of pervasiveness on a firm level. Acemoglu and Restrepo (2016) use the term 

“automation at the extensive margin” for technical change that fulfills more and more tasks in 

the production process. This stands in contrast to a technology that fulfills a given set of tasks 

with an increasing level of pace (’automation at the intensive margin’) and thus raises the 

potential for economies of scope in production processes. While the rise of robots is well 

reported, their contribution at the ’extensive margin’ needs further investigation. To overcome 

this limitation, a new index, the RTII, is introduced. It is constructed by using an indicator 

variable 𝕀 that is 1 if a specific task (Appendix I) was executed in year t from at least one robot 

in country i and is zero otherwise. Next, the sum of all tasks for which robots were used was 

divided by the potential number of tasks for which robots can be operated (namely, 33). That 

way, the relative number of tasks (such as metal casting, plastic moulding, etc.) was taken into 

account to use a proxy for the diffusion process of robots across several tasks and industries 

(see Table 7 and Table 8). The RTII was calculated in two steps using the following procedures: 

 

 

 

 

 

Table 7: Tasks Fulfilled by Robots (per Country) 

Task. No. / 

Country 

1 2 3 … 33 ∑ 

Germany 1995 51375 20114 …     … 2401 151724 

Germany 1996 60000 23826  … 2506 177494 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
France 1995 13274 6634 156 … 175 39647 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
 

Source: Own representation 

 

 

𝑅𝑇𝐼𝐼 = exp(𝜂𝑖𝑡), where 

𝜂𝑖𝑡 =
1

𝑇
∑ 𝑡𝑗 ⋅ 𝕀

𝑇

𝑗=1

{Δ𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑡 ∈ ℝ+} 
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Table 8: Relative Shares of Tasks Fulfilled by Robots (ηit) 

Task. No. /  

Country 

1 2 3 … 33 ∑ 

Germany 1995 1/33  1/33 …     … 1/33 0.538 

Germany 1996 1/33 1/33  … 1/33 0.513 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
France 1995 1/33  1/33 1/33 … 1/33 0.564 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
 

Source: Own representation 

 

Figure 6: RTII Results for all Countries in the Panel 

Source: IFR(2017) – own calculations 
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The production function now becomes: 

𝑦𝑖𝑡  =  𝐴𝑖𝑡  ·  (𝑟𝑖𝑡  ·  𝑅𝑇𝐼𝐼𝑖𝑡)𝛼 ⋅  𝐶𝑎𝑝𝐶𝑇𝑖𝑡
𝛽 ⋅ 𝐶𝑎𝑝𝐼𝑇𝑖𝑡 𝛾 ·  𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡 𝛿. 

Thus, the final regression model for M2 can be expressed as follows: 

ln(𝑦𝑖𝑡) − ln(𝑦𝑖𝑡−1)  =  

𝛼 + 𝛽1[𝑙𝑛(𝑅𝑇𝐼𝐼𝑖𝑡 ×  𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑡) −  𝑙𝑛(𝑅𝑇𝐼𝐼𝑖𝑡−1 ×  𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑡−1)] + 𝛽2[𝑙𝑛(𝐶𝑎𝑝𝐶𝑇𝑖𝑡) −

 𝑙𝑛(𝐶𝑎𝑝𝐶𝑇𝑖𝑡−1)] + 𝛽3[𝑙𝑛(𝐶𝑎𝑝𝐼𝑇𝑖𝑡 )  −  𝑙𝑛(𝐶𝑎𝑝𝐼𝑇𝑖𝑡−1)] + 𝛽4[𝑙𝑛(𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡) −

 𝑙𝑛(𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡−1)] + + 𝑑𝑖  +  𝑒𝑡  +  𝑢𝑖𝑡   

Hence, fixed effects of country and time as well as the technical progress of robots - expressed 

in terms of the diversity of tasks that robots can perform - are considered which leads to a more 

realistic picture of how robots influence growth in labour productivity. On the downside, this 

measure can neither differentiate between the economic relevance of a specific task, nor capture 

task-changes – especially the fulfilling of new tasks - as categories are rigid in the IFR reporting 

nomenclature. The results in Table 9 demonstrate a highly significant improvement effect for 

robots. The RTII-related coefficient is the product of the RTII measure and the operational 

stocks of robots. It is highly significant and the size of the coefficient is almost 2.5 times larger 

than the IT and almost 4 times larger than the software coefficient. Both capital measures also 

have positive signs and thus serve as complements for robots. CT Capital, on the other hand, 

serves as a substitute for the other capital types, while the size of the economic effect lays 

between those of IT and Software Capital. Hence, only parts of the productivity gains caused 

by software and IT Capital are absorbed by CT Capital. 

  
Table 9: M2 Regression Model (Results) 

 

Source: Own calculations 

Note: ***, ** and * display significance at the 1%, 5% and 10% level, respectively 

 

 

 

 

 

Diff (Log LP)  M2.1 M2.2 M2.3 M2.4 

Diff(Log Robots 

/ Log HEMPE x RTII) 

0.125 (***) 0.191(*) 0.226  (***) 0.226 (***) 

Diff(Log CapCTtot 

/ Log HEMPE) 

 -0.061 -0.048 -0.083 (**) 

Diff(Log CapITtot  

/ Log HEMPE) 

  0.149 (***) 0.0911 (***) 

Diff(Log CapSofttot  

/ Log HEMPE) 

   0.065 (***) 

Observations 188 188 188 188 

Adj.RSq.  -0.07 0.019 0.351 0.519 
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4.2.3. M3: Industrial Robots and the Division of Labour (DoL) 

In the third regression model, M3, the ratio of gross output to value-added serves as a 

regressand. This indirectly takes the different manufacturing shares of the countries into 

account (Figure 7). Like the manufacturing share, the ratio of gross output and value-added is 

always a positive number greater than unity, as a value of one would indicate no use of 

intermediates and thus no division of labour at all. A high level of  the ratio corresponds to a 

country that makes a high use of the efficiency gains caused by DoL between and within 

countries. The idea behind the specification is that the relative size of the manufacturing sector 

to overall GDP is a powerful indicator for the economic competition profile of a country. 

 

Figure 7: Manufacturing Shares of Value-added (per Country) 

Source: EU KLEMS (2017) – own calculations 

 

Naturally, besides the consideration of only the factors of production, even if innovative and 

economically-relevant such as robots, other aspects still do play a meaningful role, e.g., national 

growth strategies, the size of the home market, and the ability level of workers as well as 

historical aspects. Past innovations in one field raise the chance for future innovations, e.g., for 

disruptive innovations, subsequent innovations often follow in the same sector. For the 

establishment of electric car charging stations, the invention of ever more efficient batteries that 

increase the potential driving range are examples of such subsequent innovations. The measure 

thus gives rise to the question of how strong the effects of current inputs are for the 

competitiveness of the European manufacturing industry. The underlying structure of the 

production model M3 is: 
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𝐷𝑜𝐿 =     

𝐺𝑂𝑚𝑎𝑛𝑢𝑓

𝑉𝐴𝑚𝑎𝑛𝑢𝑓

𝐺𝑂𝑡𝑜𝑡
𝑉𝐴𝑡𝑜𝑡

×
𝐻𝐸𝑀𝑃𝐸𝑚𝑎𝑛𝑢𝑓  

𝐻𝐸𝑀𝑃𝐸𝑡𝑜𝑡
= 𝐴𝑖𝑡 ⋅ 𝐶𝑎𝑝𝐼𝑇𝑖𝑡

𝛼 ⋅ 𝐶𝑎𝑝𝐶𝑇𝛽 ⋅ 𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝛾 ⋅ 𝑟𝑖𝑡
𝛿 . 

Thus, the final regression model for M3 can be expressed as follows: 

ln(𝐷𝑜𝐿𝑖𝑡) − ln(𝐷𝑜𝐿𝑖𝑡−1)

= 𝛼 + 𝛽1[ln(𝑟𝑖𝑡 ) − ln(𝑟𝑖𝑡−1)] + 𝛽2[ln(𝐶𝑎𝑝𝐶𝑇𝑖𝑡) − ln(𝐶𝑎𝑝𝐶𝑇𝑖𝑡−1)]

+ 𝛽3[ln(𝐶𝑎𝑝𝐼𝑇𝑖𝑡) − ln(𝐶𝑎𝑝𝐼𝑇𝑖𝑡−1)] + 𝛽4[ln(𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡 ) − ln(𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡−1)]

+ +𝑑𝑖 + 𝑒𝑡 + 𝑢𝑖𝑡 

With DoL as a measure of the division of labour, one can distinguish between whether an 

economy uses only relatively few intermediates and concentrates exclusively on building final 

goods. In such cases, supply- and demand-side shocks are more difficult to absorb. This means 

that for countries that make lower use of labour division, higher efforts and expenditures are 

necessary when combatting the negative results of a shock. The higher the degree of DoL of an 

economy is, the more relative weight it has in each industry compared to other states and the 

more it can make use of the productivity gains caused by the division of labour. This then results 

in a higher level of competitiveness such that shocks will only have a temporary effect on the 

outcome level of the overall economy (Carvalho and Tahbaz-Salehi, 2019). To shed light on 

the question of whether robots not only increase labour productivity but also improve the level 

of the DoL, M2 is estimated again, using DoL as the dependent variable, resulting in model 

M3. More precisely, the relative level of DoL of the manufacturing industry (DoL manuf) 

divided by the level of DoL of total industries (DoL tot) - is used. This indicator measures the 

relative importance of total robot intensity for the relative level of DoL. Due to the aspect that 

DoL represents a ratio, the manufacturing-total industries ratios are used as regressors, e.g., the 

amount of manufacturing robots divided by the total amount of robots used in country i. This 

ratio is then multiplied by the ratio of total working hours and manufacturing working hours. 

This has been done in order to achieve results, which correspond to the model specifications of 

the former models. A modification was necessary for the robot share as using logarithms 

requires positive values for operational stock ratios which was not the case for countries who 

installed robots in manufacturing after 1995 (Denmark in 1996 and Austria in 2002). For these 

cases, the constant number ‘one’ was added to the stocks which had no negative drawback 

either mathematically or economically. The first argument is true since mathematically 

𝑙𝑛(1 +  𝑟) ≈  𝑟 holds for small r and the second argument holds since no installations - neither 

in the panel nor in any real-world production plant - ever start with a single robot so that ln(1) 

= 0 leads to no bias in the operational stocks. RTII was not considered here as the task intensity 

of robots does not seem to be crucial for the DoL output measure as the values for the DoL lie 

between 1.16 (UK in 2000) and 2.28 (Spain in 2007). In 2015, Italy (2.1.), France (1.96) and 

Germany (1.41) were the economies that made use of the DoL most extensively. The modus, 

with a frequency of 91, is located at the value of two. 

In the regression model, the level of DoL is only weakly correlated with the size of the economy. 

Industrial robots show no significant effect on the DoL at all. This suggests that they have no 

effect on the degree of DoL for the European economies under consideration. IT Capital per 

hours worked drives the speed of economic integration, i.e., an increase of IT Capital per 

working hour by 10%, increases the DoL by roughly 1.2%. The effect is significant at the 10% 
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level. CT Capital shows an effect in the opposite direction: An increase in CT Capital by 10% 

decreases the DoL by 1.2%. Thus, IT Capital leads to a higher DoL level of the manufacturing 

sector compared to other sectors, while CT Capital fosters innovation diffusion and thus leads 

to a less dominant share of manufacturing in the DoL variable. CT Capital and Software Capital 

otherwise do have a significant influence on the level of the DoL, while IT Capital does not. 

Although this finding corresponds to the theoretical considerations of diffusion processes, it 

does so in an opposite way. As CT Capital is more specific and more heterogeneous on a firm 

level, CT Capital would be expected to lead to competitive advantages. IT Capital on the other 

hand has far diffused in the past decades and already caused increases in productivity but not 

in the level of competitiveness as the speed of diffusion hindered even temporary monopolistic 

revenues. Nonetheless, the explanatory power of the model is indisputably low. 

 

Table 10: M3 Regression Model (Results) 

 

Source: Own calculations 

Note: ***, ** and * display significance at the 1%, 5% and 10% level, respectively 

 

As the regression output table shows (Table 10), the level of DoL is not influenced by either 

the per capita robot stocks or one of the other factors of production. The process of dividing 

labour inside a firm is a binding prerequisite for productivity gains to spread throughout the 

economy. Therefore, this investigation might deliver different results when firm level data is 

used. At a macro level for the nine European countries in question, an enhanced DoL cannot 

(yet) be observed for any of the factors of production. 

 

 

4.2.4. M4: Industrial Robots, Returns to Scale and Labour 

Productivity 

After considering the most relevant aspects via M1-M3, the opportunity arises to quantify a 

more sophisticated relationship between the robots employed and labour productivity. 

Following the line of argumentation of Scherer (1989), innovations may not be sufficiently 

accounted for in a purely linear representation. In order to develop a proxy for the long-term 

Diff (Log LP)  M3.1 M3.2 M3.3 M3.4 

Diff(Log (1+Rel Robots 

pch)) 

-1.23 -1.41 -1.35(*) -0.33 

Diff(Log(Rel CapCT pch))  0.738 0.73 0.894 

Diff(Log(Rel CapIT pch))   -0.28 1.502 

Diff(Log(Rel CapSoft pch))    -1.9 

Observations 188 188 188 188 

Adj.RSq.  -0.16 -0.16 -0.16 -0.11 
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relationship, that corresponds to the second derivative 
𝛿2𝑌

𝛿𝑟2, a quadratic term can be included to 

estimate an additional increase in the factor of production contributing to output growth. 

Scherer (1989:231f.) offers the following interpretation of the quadratic coefficient: 

i) If the regression intercept is zero and the quadratic term is insignificantly different from 

zero, the size of the beta coefficients show the level of returns to scale, 

ii) if the quadratic term is significantly negative (and the linear term is significantly 

positive), decreasing returns to scale exist and 

iii) if the quadratic term is significantly positive (and the linear term is significantly 

positive), increasing returns to scale exist.  

 

Therefore, in line with Scherer, an additional simple panel regression including time and 

country fixed effects between output and robots is considered, i.e.,  

𝑂𝑢𝑡𝑝𝑢𝑡 ≈ 𝛼 + 𝛽1 𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑡 +  𝛽2𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑡
2  + 𝑑𝑖 + 𝑒𝑡 + 𝑢𝑖𝑡  

to analyze the functional form of the robots and to check whether the intercept is significantly 

different from zero. Due to perfect multicollinearity, the regression had to be run successively, 

first with robots and then with robots squared as single regressor. The results are presented in 

Table 11. The squared robots is calculated as Robots pch Sq=Robots^2/HEMPE. Labour 

productivity is considered as a dependent variable. The production function for M4 takes the 

following form: 

𝑦𝑖𝑡  =  𝐴𝑖𝑡  ·  𝐶𝑎𝑝𝐼𝑇𝑖𝑡  ·  𝐶𝑎𝑝𝐶𝑇𝑖𝑡  ·  𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡  ·  𝑟 𝑖𝑡
2  

Thus, the final regression model for M4 can be expressed as follows: 

ln(𝑦𝑖𝑡) − 𝑙𝑛(𝑦𝑖𝑡−1)

= 𝛼 + 𝛽1[ln(𝐶𝑎𝑝𝐶𝑇𝑖𝑡) − ln(𝐶𝑎𝑝𝐶𝑇𝑖𝑡−1)] + 𝛽2[ln(𝐶𝑎𝑝𝐼𝑇𝑖𝑡)] − ln (𝐶𝑎𝑝𝐼𝑇𝑖𝑡−1)]

+ 𝛽3 [ln (𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡) − ln (𝐶𝑎𝑝𝑆𝑜𝑓𝑡𝑖𝑡−1)] + 𝛽4[ln(𝑟𝑖𝑡) − ln (𝑟𝑖𝑡−1)] +  𝑑𝑖 +  𝑒𝑡 

+  𝑢𝑖𝑡 

 

Table 11: Scherer Specification Models 

 Intercept Coefficient Adj. R2 

Diff Log VA _ Diff Log Robots   

P-Values  

0 

- 

0.842(***) 

< 2.2e-16 

0.809 

- 

Diff Log VA _ Diff Log Robots 

Sq. 

P-Values 

0 

- 

0.421 (***) 

< 2.2e-16 

0.809 

- 

Diff Log Labprod _ Diff Log 

Robots 

 P-Values 

0 

- 

0.1792 

0.099 (*) 

0.01 

- 
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Diff Log Labprod_ Diff Log 

Robots Sq 

P-Values 

0 

- 

-0.01 

0.739 

-0.17 

- 

 

Source: Own calculations 

Note: ***, ** and * display significance at the 1%, 5% and 10% level, respectively 

 

The differences of the logged robots and robots per working hours have a significant positive 

effect on value-added and labour productivity. The squared robots have a positive significant 

effect on changes in value-added (increasing returns to scale). This does not hold for labour 

productivity where no returns to scale are at hand. For the subsequent regression models, only 

the Robots pch Sq (s.a.) is used. 

 
 

 Table 12: M4 Regression Model (Results) 

 

Source: Own calculations 

Note: ***, ** and * display significance at the 1%, 5% and 10% level, respectively 

 

The significance of squared robots could be confirmed only by adding Software Capital as an 

additional regressor variable. Thus, Software Capital and robots work as gross-complements in 

output creation. This relationship is non-linear: With an additional increase of robots (Squared 

Robots) the level of Software Capital used decreases. That way, the intuition of increasing 

returns to scale from Table 11 concerning robot stocks can also be confirmed for the relationship 

between robot intensity and labour productivity in the multiple panel regression model. With a 

1% increase in squared robots, labour productivity increases in average by 0.05%. Nevertheless, 

as this effect is roughly 1/4 of the former measured effect from robots on labour productivity 

(Table 6, Table 9), the indication of increasing returns to scale is limited. 

  

Diff (Log LP)  M4.1 M4.2 M4.3 M4.4 

Diff(Log (Robots2/Log HEMPE)) -0.012 -0.007 -0.0042 0.053 (**) 

Diff(Log (CapCT/LogHEMPE))  -0.013 0.004 -0.073  

Diff(Log (CapIT / Log HEMPE)   0.13(*) 0.048  

Diff(Log CapSoft/ Log HEMPE)    0.095 (***) 

Observations 188 188 188 188 

Adj.RSq.  -0.177 -0.179 0.075 0.312 
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4.2.5. M5: Time Effects from Industrial Robots on Labour 

Productivity 

That robots contribute to labour productivity according to the year of first installation is a 

plausible assumption taking into account that the quality of robots is improving over time. If 

the technical progress is strong enough, this might result in a change of the scale level of the 

macroeconomic production function. To check for this assumption, the panel was split into two 

almost equally sized sub-panels, one sub-panel covering the period from 1995 to 2004 and the 

other sub-panel the period from 2005 to 2015. Even though the year 2005 was politically 

important - as two of the EU founding countries, namely Netherlands and France, voted against 

the proposed EU constitution2, the main reason for splitting the data in 2005 was the desired 

symmetry in the two sub-panels. This procedure was also chosen by Jungmittag and Pesole 

(2019). There are two theoretical lines of argumentation here: As robot stocks increase over 

time, robots installed later may suffer from the law of diminishing returns to scale and therefore 

show lower or even no influence on productivity. On the other hand, latterly installed robots 

embody a higher level of current technical progress and thus could lead to higher productivity 

gains than those robots installed earlier. In the same direction, goes the argument that robots - 

because they are a GPT - need some time to spread their productive power over the economy, 

especially if robots reveal their full economic impact after accumulation over time. 

 

 Table 13: M5 Regression Model (Results) - Time Split (1995-2004) 

 

Source: Own calculations 

Note: ***, ** and * display significance at the 1%, 5% and 10% level, respectively 

 
 

Table 14: M5 Regression Model (Results) - Time Split (2005-2015) 

 
2 Some theoretical explanations for this decision are discussed in Binzer Hobolt and Brouard (2011). 

Diff (Log LP)  M5.1 M5.2 M5.3 M5.4 

Diff Log LP 0.075 (***) 0.11 (***) 0.136 (***) 0.139 (***) 

Diff(Log (CapCTtot  

/ LogHEMPE)) 

 -0.02 (**) -0.04 (***) -0.077 (***) 

Diff(Log (CapITtot  

/ Log HEMPE) 

  0.023 (*) 0.063 (***) 

Diff(Log CapSofttot 

/ Log HEMPE) 

   0.09 (***) 

Observations 89 89 89 89 

Adj.RSq.  -0.1 -0.01 0.1 0.581 

Diff (Log LP)  M5.1 M5.2 M5.3 M5.4 

Diff Log LP 0.076 (***) 0.02 (***) 0.03 (***) 0.125 (***) 

Diff(Log(CapCTtot 

/ LogHEMPE)) 

 0.03 (***) 0.025 (***) -0.06 (***) 
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Source: Own calculations 

Note: ***, ** and * display significance at the 1%, 5% and 10% level, respectively 

 

The regression results of M5 indicate that the effects from robots on labour productivity are 

lower for the second sub-panel than it was for the first sub-panel. For the first 10 years of the 

panel, there was a highly significant effect from robots in the range of 0.139, while for the final 

11 years there is again a highly significant effect but the coefficient is roughly 10% smaller. 

These results contradict the idea of robots being a GPT as -by interpretation of the regression 

results - it is unlikely that the peak of productivity caused by robots is still to come. 

 

4.2.6. M6: Capital-Augmentation vs. Capital-Deepening 

Finally, and in order to test the hypothesis that robots lead to capital-augmenting technical 

change, a step-wise multivariate regression is conducted where robots are added to the model 

as the final variable. The output results are reported in Table 15.  

The results show that robots behave as a substitute for CT Capital (negative sign of the 

coefficient) but as a complement for Software and IT Capital. The answer to the question of 

whether robots lead to capital augmentation might be given by comparing the overall effect 

from capital (0.101), which is lower than for the model specification without robots. Therefore, 

there is a tendency for capital deepening - when robots are attributed to capital goods - but no 

tendency indicating capital-augmenting technical progress caused by robots. 

 

Table 15: M6 Regression Model (Results) 

 

Source: Own calculations 

Note: ***, ** and * display significance at the 1%, 5% and 10% level, respectively 

 

Diff(Log (CapITtot  

/ Log HEMPE) 

  0.008 (***) -0.12 (***) 

Diff(Log CapSofttot 

/ Log HEMPE) 

   0.192 (***) 

Observations 98 98 98 98 

Adj.RSq.  0 0.1 0.1 0.66 

Diff (Log LP)  M6.1 M6.2 M6.3 M6.4 

Diff Log LP 0.174 (***) 0.002 -0.032(**) -0.09 

Diff(Log(CapCTtot/LogHEMPE))  0.13 (*) 0.073 0.05 (*) 

Diff(Log (CapITtot / Log HEMPE)   0.065 (*) 0.07 (***) 

Diff(Log CapSofttot/ Log HEMPE)    0.26 (***) 

Observations 189 189 189 189 

Adj.RSq.  0.189 0.08 0.246 0.55 
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5. Conclusion 

The scope of the present paper is to answer the question of whether industrial robots are a GPT. 

To answer this question on a macro level, a panel data analysis for nine European countries was 

conducted to test different characteristics of a GPT according to the literature. Each of the six 

research questions could be linked to a specific regression model and the coefficients tend in 

the expected directions. Firstly, robots increase labour productivity (M1) but have no effect on 

the level of Division of Labour (DoL) (M3). The latter point reflects the idea that a GPT does 

not lead to a concentration in some industries but evenly spreads its productivity gains 

throughout the economy. These results have to be interpreted cautiously because the overall 

explanatory power of the model was very low, indicating that the output measure is not affected 

by any of the regressors. Still, both results show that pervasiveness is (already) caused by 

robots. Additionally, model M2 demonstrated that robots are not only an example of an 

innovative input, but that robots themselves are inherently driven by technical progress. By 

implementing an innovative, novel measure of technical progress (the Robot Task Intensity 

Index - RTII) within the operational stock of robots, the technical improving nature of robots is 

demonstrated (M2). This improvement effect remains stable even when Software Capital is 

included in the regression model. Interestingly, Software Capital could also be identified as an 

enhancing force increasing returns to scale from robots. The Scherer approach (M4) showed 

that there are returns to scale for the full specified model, i.e., using all types of capital. For the 

purpose of defining robots as GPTs, this finding is sufficient as, as the discussion in Section 2 

indicates the existence of high returns to scale speak against technologies being considered a 

GPT. Nonetheless, the effect seems moderate which corresponds to the finding in the time-split 

regression model (M5). It was shown that productivity gains from robots slowed down for the 

time period between 2005 and 2015 in contrast to the period between 1995 and 2004. This 

particular finding is a clear indication in support of the idea that robots can already be 

considered a GPT. Finally, yet importantly, robots give rise to innovational complementarities 

as they lead to capital deepening but not to capital augmentation for the process of labour 

productivity creation (M6).  

Overall, none of the six hypotheses developed in order to investigate specific characteristics of 

a GPT on a macro level could be rejected. Although the results speak in favour of robots being 

a GPT, several aspects have to be mentioned critically: As a macro perspective was chosen, the 

appearance and size of potential spillovers from robots could not explicitly be accounted for, 

which is a crucial part of the understanding of a GPT. Additionally, it was not possible to 

distinguish between the types of returns to scale (i.e., whether due to Dynamic vs. Static 

Externalities). Hence, in future research, the relationship between a GPT and industrial robots 

can be elaborated in more detail, for example by using firm-level data, or by considering trade 

relations among the most robotized European  countries. Nevertheless, the study revealed the 

impact that robots have on the development of labour productivity. For policymakers, the 

combined enhancement of modern robot technologies as well as sophisticated software 

applications, which serve as complementary innovations to industrial robots, appear to be 

effective tools to generate growth in outcome and labour productivity among European 

countries and thus to counteract the productivity slowdown. 
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Appendix 

 

Table 16: Task Categories by Field of Application 

No. task             Id. No.         Task-Description 

1                111 Metal casting 

2  112 Plastic moulding 

3  113 Stamping forging, bending 

4  114 Handling operations at machine tools 

5  115 Machine tending for other processes 

6  116 Measurement, inspection, testing 

7  117 Palletizing 

8  118 Packaging, picking, placing 

9  119 Material handling 

10  120 Handling operations unspecified 

11  161 Arc welding 

12  162 Spot welding 

13  163 Laser welding 

14  164 other welding 

15  165 Soldering 

16  166 Welding unspecified 

17  171 Painting and enameling 

18  172 Application of adhesive, sealing material 

19  179 Others dispensing/spraying 

20  180 Dispensing unspecified 

21  191 Laser cutting 

22  192 Water jet cutting 

23  193 Mechanical cutting/grinding/deburring 

24  198 Other processing 

25  199 Processing unspecified 

26  201 Assembling 

27  203 Disassembling 

28  209 Assembling unspecified 

29  901 Cleanroom for FPD 

30  902 Cleanroom for semiconductors 

31  903 Cleanroom for others 

32  905 Others 

33 999 Unspecified 
Source: IFR (2017:41)  
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Table 17: Correlation Matrix  

 Real 

VA 

Robots HEMPE CapCT CapIT CapSoft 𝜂 

Real 

VA 

1       

Robots 0.79 1      

HEMPE 0.89 0.56 1     

CapCT 0.67 0.92 0.41 1    

CapIT 0.86 0.77 0.64 0.65 1   

CapSoft 0.45 0.58 0.12 0.58 0.65 1  

RTII 0.53 0.72 0.37 0.74 0.35 0.32 1 

Source: Own calculations 

Note: All Values are reported in diff logs. 

 

Table 18: Correlation Matrix  

 Real 

VA 

Robots HEMPE CapCT CapIT CapSoft 𝜂 

Real 

VA 

1       

Robots 0.87 1      

HEMPE 0.56 0.76 1     

CapCT 0.86 0.72 0.46 1    

CapIT 0.86 0.47 0.52 0.57 1   

CapSoft 0.68 0.63 0.7 0.65 0.96 1  

RTII 0.6 0.68 0.56 0.39 0.29 0.155 1 

Source: Own calculations 

Note:  Significance levels are stated in parentheses.   

Bolded value indicates a potential multicollinearity issue as the variance inflation factor (
𝑅2

1−𝑅2) 

is greater than ten (Hair et al., 2014).   

All Values are reported in diff logs per capita hours worked.  
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Table 19: Unit Root CADF Tests-Results (Intercept), α=5%   

 

 Real VA 

pch 

VA/GO Robots 

pch 

CapCT 

pch 

CapIT 

pch 

CapSoft 

pch 

RTII 

P-Value 0.001   0.349 0.22 0.14 2e-6 0.31 0.0022 

Stationarity Yes No No No No No Yes 

Source: Own calculations 

 

Table 20: Wooldridge's test for Serial Correlation in FE panels Tests-Results, α=5% 

 

Source: Own calculations 

 

Table 21: Pesaran Tests- of Cross-Sectional Dependence, α=5%  

 Real VA 

pch 

VA/GO Robots 

pch 

CapCT 

pch 

CapIT 

pch 

CapSoft 

pch 

RTII 

P-Value < 2.2e-16 <2.2e-16 < 2.2e-16 <2.2e16 <2.2e-16 <2.2e-16 <2.2e-16 

Independ. No No No No No No No 

Source: Own calculations 

 

Table 22: Breusch Pagan Heteroscedasticity Test-Results, α=5% 

 M1 M2 M3 M4 M5.1 M5.2 M6 

P-Value 5.7e-8   9.2e-11 0.003 <2.2e -16 0.34 0.08 <5.7e-8 

Heterosce

dasticity 

Yes Yes Yes Yes No No Yes 

Source: Own calculations 

 

  

 M1 M2 M3 M4 M5.1 M5.2 M6 

P-Value 0.00015 0.0025 9.3e-08 0 .059 0.668 0 .999 0.00015 

Stationarity No No No Yes Yes Yes No 
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Table 23: Hausman Test. α=5%  

 M1 M2 M3 M4 M5.1 M5.2 M6 

P-Value 0.995  0.999 0.977  0.991  <7.9e-13  <2.2e-16  0.995  

FE prior No No No No Yes Yes No 

Note: If either heteroscedasticity or serial correlation is present, the variances of the FE and RE 

estimators are not valid and the corresponding Hausman test statistic is inappropriate (Baltagi, 

2005). This was avoided by using solely stationary variables, which provided uncorrelated 

errors. For both M5 models only time effects were considered as otherwise the degrees of 

freedom were too low. 
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