

Managing complex lifecycles – closing the loop for precious & special metals

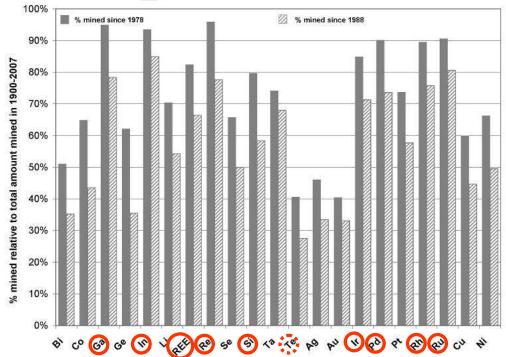
Dr. Christian Hagelüken Umicore Precious Metals Refining, Hanau

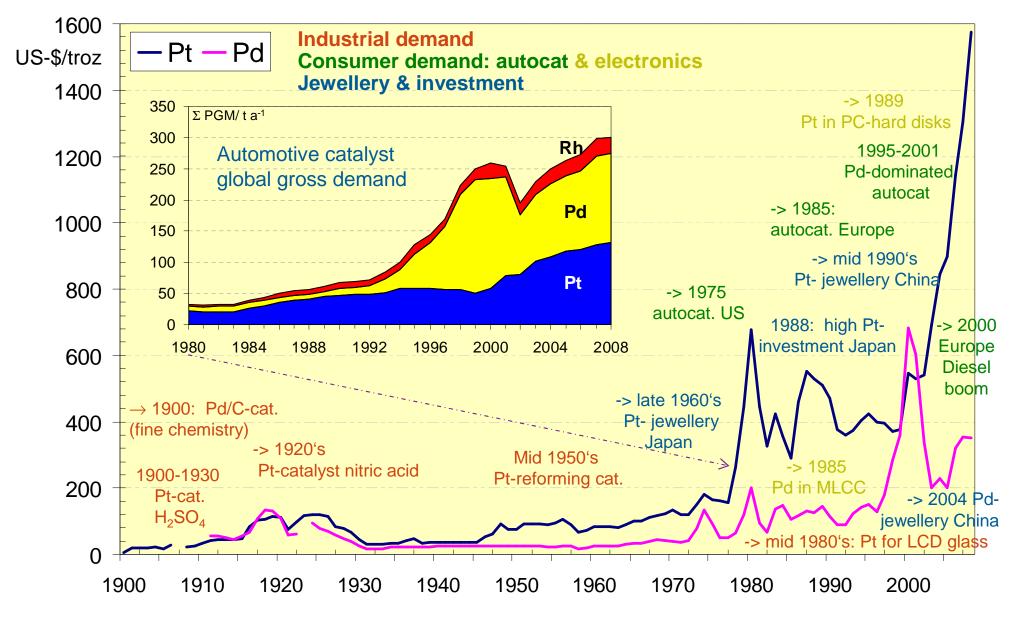
2nd International Wuppertal Colloquium on "Sustainable Growth, Resource Productivity and Sustainable Industrial Policy – Recent Findings, New Approaches for Strategies and Policies"

> September 10 – 12, 2009 at the University of Wappertal, Schumpeter School of Business and Economics

Wuppertal Institute for Climate, Environment and Energy

Precious & special metals have become irreplaceable for (consumer) product markets





- "Technology metals"
 → crucial for functionality
- Booming demand since 20/30 years
- O > 80% mined since 1978
- Clean tech drives further growth

Example platinum / palladium: long term price development & milestones in use

Dr. C. Hagelüken, 2nd Int. Wuppertal Colloquium, 10.9.2009

Important clean-/high-tech applications competing for "affordable" technology metals supply

	Bi	Co	Ga	Ge	In	Li	REE	Re	Se	Si	Та	Те	Ag	Au	Ir	Pd	Pt	Rh	Ru
Pharmaceuticals																			
Medical/dentistry																			
Super alloys																			
Magnets																			
Hard Alloys																			
Other alloys																			
Metallurgical*																			
Glass, ceramics, pigments**																			
Photovoltaics																			
Batteries																			
Fuel cells																			
Catalysts																			
Nuclear																			
Solder																			
Electronic																			
Opto-electric																			
Grease, lubrication																			

* additives in smelting, ..., plating. ** includes Indium Tin Oxide (ITO) layers on glass

umi

Precious Metals

Refining

Example indium, selenium, tellurium – strong growth expected in thin film photovoltaics (PV)

Te ~ 450-475 t/a*

use in PV

ITO for LCD & plasma 80%
Alloys for LMPA, dental 10%
Electronics 5%

In ~ 600 t/a* Photovoltaics 3% Jewellery 2%

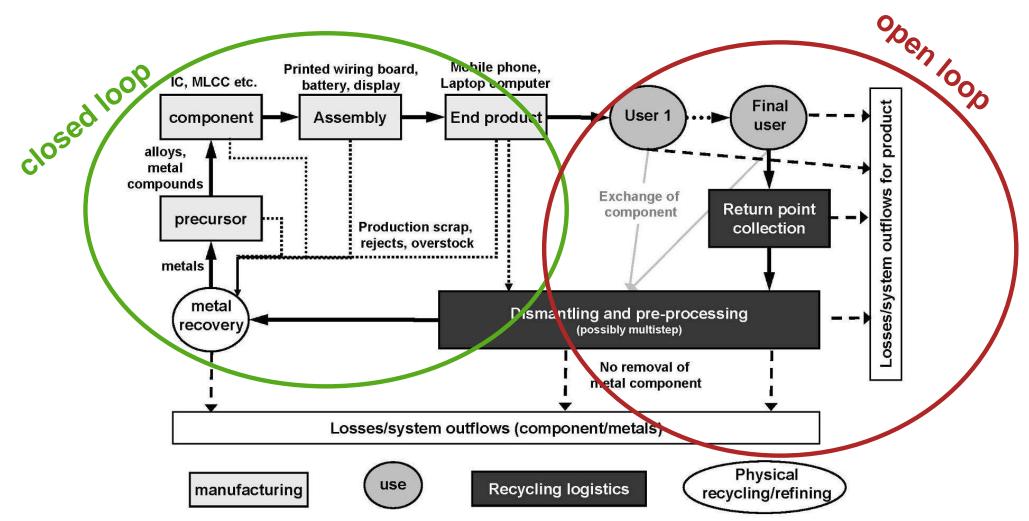
Se ~ 2700-3000 t/a*

Glass & Pigments 40%
Metallurgy incl Electrolytic Manganese Metal 35%
Chemicals incl animal feed, pharma, fertilizers 15%
Photovoltaics 3%
Others, incl optics 2%

 * World primary production (Umicore estimates)

Metallurgy incl Cu & Pb non-ferrous alloys 40% Photovoltaics 30% Chemicals & Pharmaceuticals incl rubber vulcanisation 20% Electronics incl thermo-electrics, flash memories & others 10%

Dr. C. Hagelüken, 2nd Int. Wuppertal Colloquium, 10.9.2009


"Urban mining" – recycling can make an important contribution to future supply

- + "Eternal" recycling of metals
- + High yields obtainable with state-of-the-art technologies
- + Significantly less CO₂/environmental footprint of modern recycling compared to mining (especially for precious & special metals)
- Economic & technical limits for dissipated metals
- Technical challenges within recycling chain for complex products with (e.g. ELVs, WEEE)
- Thermodynamic limits for certain metals from complex mixtures (Ta, REE, ...)
- Challenges to effectively close the loop for end-of-life products

Complex lifecycles for precious & special metals – high losses for consumer products (open loops)

- High product mobility, unclear material flows
- Multiple change of ownership, sequential locations of use around the globe
- High exports of EoL products, lack of appropriate recycling infrastructure in developing countries

Dr. C. Hagelüken, 2nd Int. Wuppertal Colloquium, 10.9.2009

 Low consumer awareness on resource value & missing economic incentives, but combined mass flows have big impact on metal demand

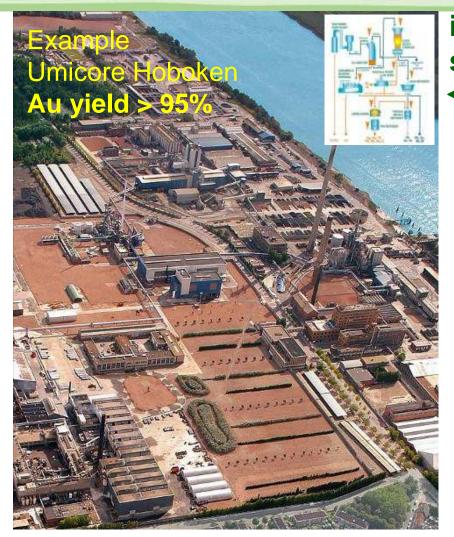
umico

Precious Metals

Refining

• Hibernating goods, discarding as trash & informal activities reduce significantly recycling efficiency.

In spite of all efforts – mobile phone recycling largely fails today



Dr. C. Hagelüken, 2nd Int. Wuppertal Colloquium, 10.9.2009

High-tech recycling is key - how to ensure that the right processes are used ?

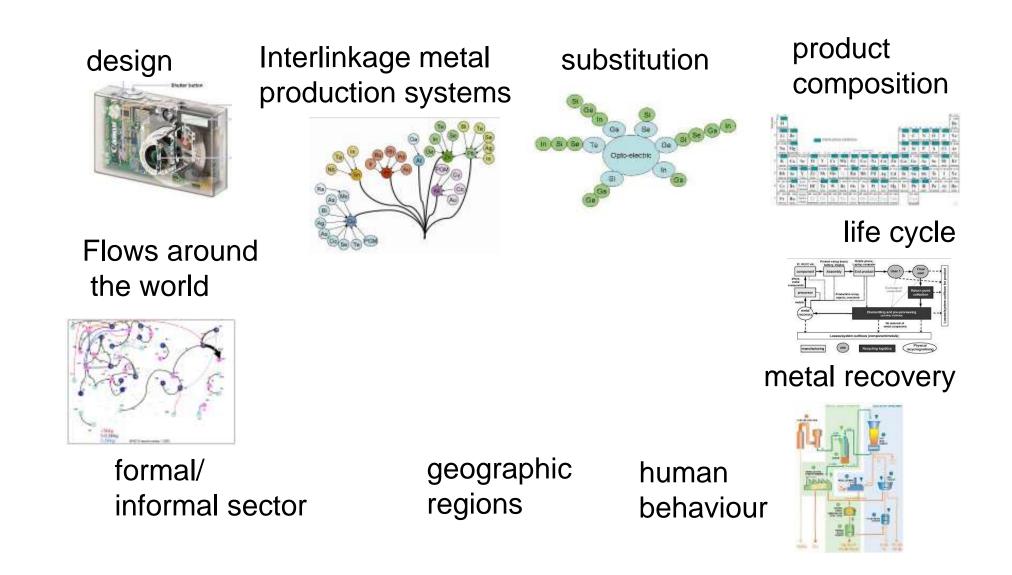
+ Focus secondary materials, input 1000 t/day

 + 17 metals recovered, value 3 billion USD (2007) (Au, Ag, Pt, Pd, Rh, Ru, Ir, Cu, Pb, Ni, Sn, Bi, Se, Te, Sb, As, In)
 + ISO 9001 & 14001, OHSAS 18001

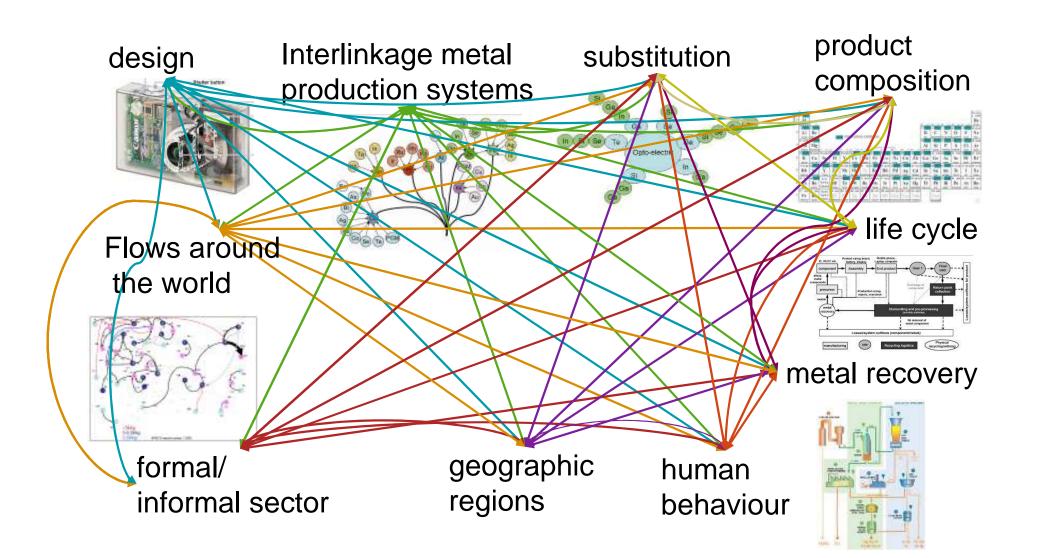
Dr. C. Hagelüken, 2nd Int. Wuppertal Colloquium, 10.9.2009

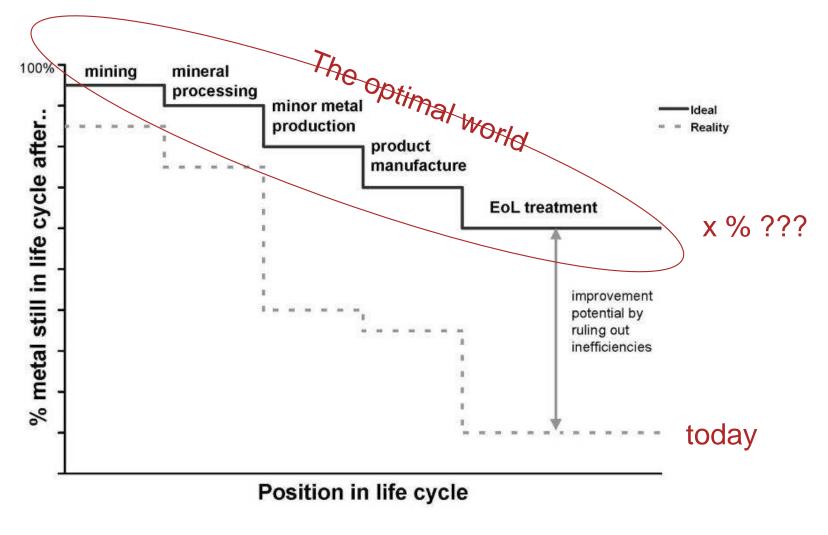
integrated metals smelting/refining ► "high tech"

backyard recycling ► "low tech"


- High losses, few metals recovered only (cherry picking)
- Dramatic environment & health impacts
- Typical for most Asian & African countries

Illegal & dubious WEEE & ELV exports deplete Europe's "urban mines"

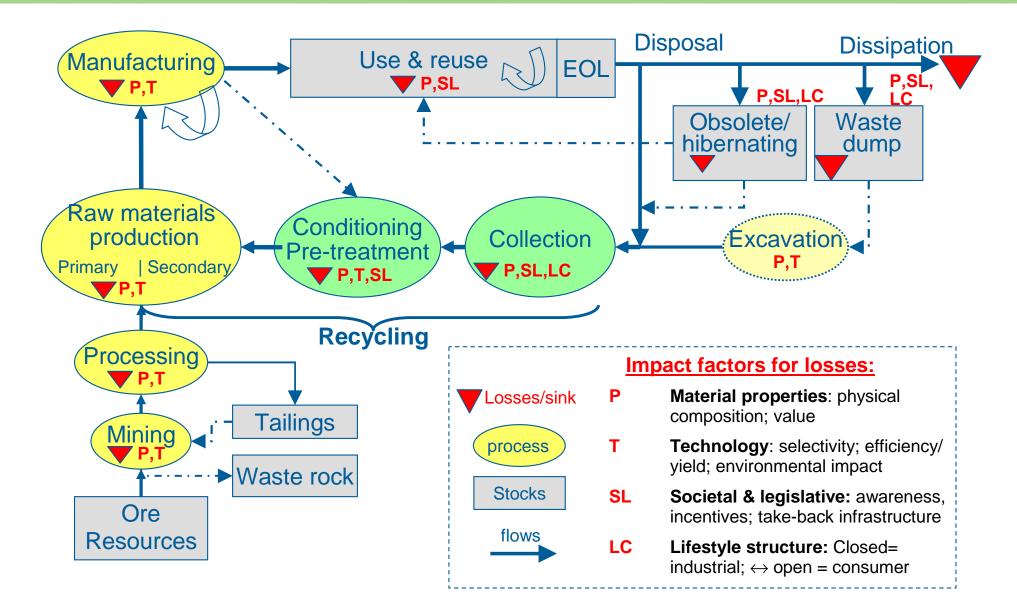

Recycling of technology metals needs to deal with complexity ... and interdependences



Recycling of technology metals needs to deal with complexity ... and interdependences

Resource efficiency can be improved on multiple levels ... with huge potential in EoL treatment

... requiring a joint approach of the participants involved in the lifecycle


IIMI

Precious Metals

Refining

Losses and respective impact factors along a product/metals lifecycle

- Booming demand for precious & special metals (functionality); energy intensive mining; geographic concentration and high degree of coupled production can cause primary supply disruptions.
- > Needed: Design for sustainability without losing product performance.
- High tech products require high tech recycling. Value of precious metals allows by-product recovery of special metals in Umicore type flowsheet.
- Recyclability of a product is not enough, it needs to happen at end-of-life.
- > Main constraints are structural, not technical; "open cycles" for consumer goods \rightarrow improve collection of consumer goods with technology metals.
- ➢ Research has to lead to (engineering) solutions → stop reinventing the wheel!
- Outreach to developing countries with knowledge transfer and solutionoriented new approaches/business models.
- Efficient recycling & responsible mining are needed to meet future metals demand.

Complex products need sophisticated recycling systems

simplistic approaches are not useful

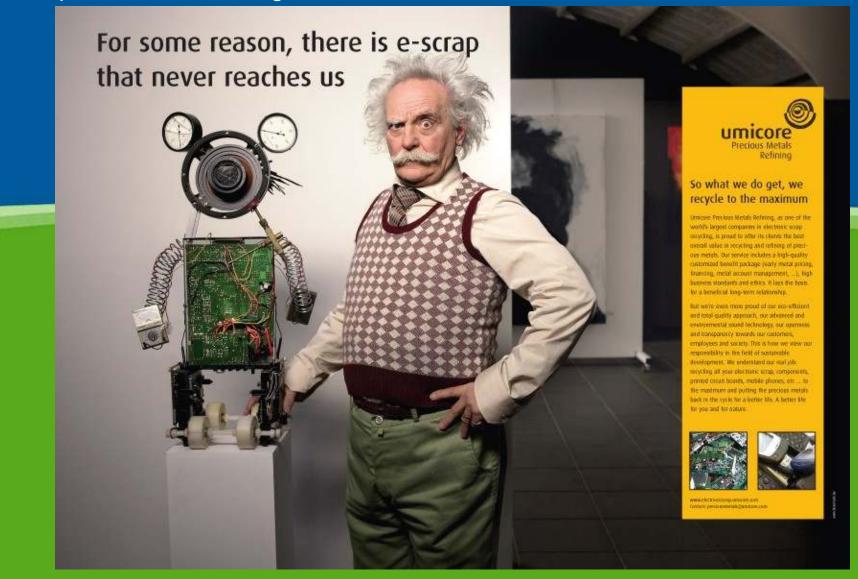
Closing the cycle should be done globally...

► holistic approach to life cycle, recycling chain and location

...at different levels

► system, product, process,...

...and look at all the factors


► technology, societal, legislative, economic...

Push interdisciplinary approaches addressing complexities in a holistic way
 ▶ material science + metallurgy + mineral processing + social science + sales/marketing
 A "recycling society" is impossible without closed loops for consumer goods.
 → New business models required, e.g. leasing products/ components/metals or

selling functionality/services instead of selling products. Set up early recycling incentives for new products (PV, EV/HEV batteries, fuel cells etc.)

Thanks for your attention

For further information: Hagelüken, C., C.E.M. Meskers: Complex lifecycles of precious and special metals, in: Graedel, T., E. van der Voet (eds): Linkages of Sustainability. Strüngmann Forum Report, vol. 4. Cambridge, MA: MIT Press, 2009

contact: christian.hagelueken@eu.umicore.com

www.preciousmetals.umicore.com